Downregulation of LIMK1–ADF/cofilin by DADS inhibits the migration and invasion of colon cancer
نویسندگان
چکیده
This study aimed to explore whether the downregulation of LIM kinase 1 (LIMK1)-actin depolymerization factor (ADF, also known as destrin)/cofilin by diallyl disulfide (DADS) inhibited the migration and invasion of colon cancer. Previous studies have shown that silencing LIMK1 could significantly enhance the inhibitory effect of DADS on colon cancer cell migration and invasion, suggesting that LIMK1 was a target molecule of DADS, which needed further confirmation. This study reported that LIMK1 and destrin were highly expressed in colon cancer and associated with poor prognosis of patients with colon cancer. Also, the expression of LIMK1 was positively correlated with the expression of destrin. The overexpression of LIMK1 significantly promoted colon cancer cell migration and invasion. DADS obviously inhibited migration and invasion by suppressing the phosphorylation of ADF/cofilin via downregulation of LIMK1 in colon cancer cells. Furthermore, DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1 in vitro and in vivo, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicated that LIMK1 was a potential target molecule for the inhibitory effect of DADS on colon cancer cell migration and invasion.
منابع مشابه
DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion.
The aim of this study was to explore the molecular mechanisms of the diallyl disulfide (DADS)-mediated downregulation of LIM kinase-1 (LIMK1) and the consequent inhibition of the migration and invasion of human colorectal cancer cells. RNA interference technology was used to establish stable LIMK1-miRNA/SW480 cell lines. The effects of DADS and LI...
متن کاملSuppression of the invasive capacity of rat ascites hepatoma cells by knockdown of Slingshot or LIM kinase.
Actin cytoskeletal reorganization is essential for tumor cell migration, adhesion, and invasion. Cofilin and actin-depolymerizing factor (ADF) act as key regulators of actin cytoskeletal dynamics by stimulating depolymerization and severing of actin filaments. Cofilin/ADF are inactivated by phosphorylation of Ser-3 by LIM kinase-1 (LIMK1) and reactivated by dephosphorylation by Slingshot-1 (SSH...
متن کاملshRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines
Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...
متن کاملDiallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer
Diallyl disulfide (DADS) has been shown to have multi-targeted antitumor activities. We have previously discovered that it has a repressive effect on LIM kinase-1 (LIMK1) expression in gastric cancer MGC803 cells. This suggests that DADS may inhibit epithelial-mesenchymal transition (EMT) by downregulating LIMK1, resulting in the inhibition of invasion and growth in gastric cancer. In this stud...
متن کاملMicroRNA-138 inhibits migration and invasion of non-small cell lung cancer cells by targeting LIMK1.
MicroRNA (miR)-138 has previously been demonstrated to have a suppressive role in numerous types of human cancer, including non-small cell lung cancer (NSCLC). LIM domain kinase 1 (LIMK1) is a serine/threonine kinase that regulates actin polymerization via phosphorylation and inactivation of cofilin. Previous studies have reported that LIMK1 is associated with NSCLC; however, the underlying reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017